

Assembly Length

How to Determine Correct Assembly Length

For most assemblies, the correct assembly length may be determined by direct measurement of the equipment or a drawing. Minimum bend radii as shown in the hose specification tables should be observed.

Assemblies are measured to the end of the seal.

Swivel female and male union

Length between centre lines of angle and banjo

Swivel female 90° swept union

Banjo coupling

Length between centre line of S.P. and end of nipple

Remember that hydraulic hose under pressure will elongate up to 2% of its length or contract up to 4% depending on pressure, type and size. Sufficient allowance should be made to permit such changes in length. To determine the length of hose needed in making assemblies with permanent or reusable couplings, subtract Dimension "C" (Cut off factor) for each coupling from the required overall assembly length. Dimension "C" may be found in the coupling specification tables.

Length between male nipple and centre of female nipple

Swivel female 45° swept union

Length between centre of angle and nipple end

 $L \ge 1$ (1+0.04)

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

Assembly Length

Occasionally an assembly will be required similar to the sketches to the right. The following equations are helpful in determining the correct length:

FOR 180° TURN APPLICATIONS

 $#1 L = 2A + \pi R$

 $#2 L = 2A + \pi R + T$

L = Overall length of the hydraulic hose assembly, in mm or inches.

A = Allowance for a minimum straight section of hydraulic hose at each end of the assembly, measure from the outer end of each coupling, in mm or inches. These two straight sections are necessary to prevent excessive stress concentrations directly back of the couplings. See table below.

R = Bending radius of the hose, in mm or inches. See hose specifications tables.

T = Amount of travel, in mm or inches.

Often right angle adapters provide a convenient means of avoiding a bend radius that is too small.

Hose	in.	1/4	5/16	3/8	1/2	5/8	3/4	1	1 1/4	1 1/2	2
ID	mm	6.4	7.9	9.5	12.7	15.9	19	25	31.8	38.1	50.8
Min.	in.	5	5	5	6	6	7	8	9	10	11
"A"	mm	127	127	127	152	152	178	203	229	254	279

Length Tolerance for Hydraulic Hose Assemblies and Specified Hose Lengths

Lenath

For lengths from 0 up to and including 12" (305 mm) For lengths > 12" (305 mm) < 18" (457 mm) For lengths > 18" (457 mm) < 36" (914 mm) For lengths > 36" (914 mm) < 48" (1219 mm) For lengths > 48" (1219 mm) < 72" (1830 mm) For lengths > 72" (1830 mm)

Elbow angle and angle of Orientation

Angle Couplings

Tolerance

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

Fitting Identification

Measuring Threads and Seat Angles

Measuring Threads

With the calliper, measure the thread diameter at the largest point. (O.D. of male threads – I.D. of female threads). See illustration at right.

Use a thread pitch gauge (see illustration below) to determine the number of threads per inch or the distance between threads in metric connections. Place the gauge on the threads (see illustrations at right) until the fit is snug. Match the measurement to the chart.

Thread Pitch Gauge

Measuring Seat Angles

When the centerline of the seat gauge extends parallel to the projected longitudinal axis of the coupling, then the angles of the gauge and seat match. See illustration at right.

Compare the measurements taken to the couplings shown in the coupling specification tables that appear in this catalog.

Fitting Identification

Fitting Identification

Dash Numbers

Most fluid piping system sizes are measured by dash numbers. These are universally used abbreviations for the size of a component expressed as the numerator of the fraction with the denominator always being 16. For example, a -04 port is 4/16 or 1/4 inch. Dash numbers are usually nominal (in name only) and are abbreviations that make the ordering of components easier.

American Thread Types

NPTF - (National Pipe Tapered Fuel)

This is a dryseal thread, the National pipe tapered thread for fuels. This is used for both male and female ends. This connection is still widely used in fluid power systems, even though it is not recommended by the National Fluid Power Associations (N.F.P.A.) for use in hydraulic applications.

The NPTF male will mate with the NPTF, NPSF, or NPSM female.

The NPTF male has tapered threads and a 30° inverted seat. The NPTF female has tapered threads and no seat. The seal takes place by deformation of the threads. The NPSM female has straight threads and a 30° inverted seat. The seal takes place on the 30° seat.

The NPTF connector is similar to, but not interchangeable with, the BSPT connector. The thread pitch is different in most sizes. Also, the thread angle is 60° instead of the 55° angle found on BSPT threads.

NPSF - (National Pipe Straight Thread for Fuels)

The National pipe straight thread for fuels. This is sometimes used for female ends and properly mates with the NPTF male end. However, the SAE recommends the NPTF thread in preference to the NPSF for female ends.

NPSM – (National Pipe Straight Mechanical)

National pipe straight thread for mechanical joint. This is used on the female swivel nut of iron pipe swivel adapters. The leak-resistant joint is not made by the sealing fit of threads, but by a tapered seat in the coupling end. This connection is sometimes used in fluid power systems. There are a few coupling systems used for hydraulic connections. They are identified as:

American, British, French, German, Japanese

This section lists the origin and coupling style. Descriptions and dimensional data follow each coupling style.

Male Half

Female Half

Thread Identification Table National Pipe Straight Mechanical (NPSM) National Pipe Tapered for Fuels (NPTF)

Dash Size	Inch Size	Thread Size	Female II	Thread D	Male Thread OD		
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)	
-02	1/8	1/8 - 27	8.7	0.34	10.3	0.41	
-04	1/4	1/4 - 18	11.9	0.47	14.3	0.56	
-06	3/8	3/8 - 18	15.1	0.59	17.5	0.69	
-08	1/2	1/2 - 14	18.3	0.72	21.4	0.84	
-12	3/4	3/4 - 14	23.8	0.94	27.0	1.06	
-16	1	1 - 11 1/2	30.2	1.19	33.3	1.31	
-20	1 1/4	1 1/4 - 11 1/2	38.9	1.53	42.9	1.69	
-24	1 1/2	1 1/2 - 11 1/2	44.5	1.75	48.4	1.91	
-32	2	2 - 11 1/2	57.2	2.25	60.3	2.38	

American

SAE J514 Straight Thread O-Ring Boss (ORB)

This port connection is recommended by the N.F.P.A. for optional leakage control in medium and high pressure hydraulic systems. The O-ring boss male will mate with an O-ring boss female only.

The female is generally found on ports.

Thread Identification Table SAE J514 Straight Thread O-Ring Boss

Dash Inch Size Size		Thread Size	Female II	Thread D	Male Thread OD		
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)	
-02	1/8	5/16 - 24	6.9	0.27	7.8	0.31	
-03	3/16	3/8 - 24	8.5	0.34	9.4	0.37	
-04	1/4	7/16 - 20	9.9	0.39	11.2	0.44	
-05	5/16	1/2 - 20	11.5	0.45	12.6	0.49	
-06	3/8	9/16 - 18	12.9	0.51	14.1	0.56	
-08	1/2	3/4 - 16	17.5	0.69	18.9	0.74	
-10	5/8	7/8 - 14	20.5	0.81	22.1	0.87	
-12	3/4	1 1/16 - 12	24.9	0.98	26.9	1.06	
-14	7/8	1 3/16 - 12	28.1	1.11	30.0	1.18	
-16	1	1 5/16 - 12	31.3	1.23	33.1	1.31	
-20	1 1/4	1 5/8 - 12	39.2	1.54	41.1	1.62	
-24	1 1/2	1 7/8 - 12	45.6	1.79	47.4	1.87	
-32	2	2 1/2 - 12	61.4	2.42	63.3	2.49	

SAE J514 37° (JIC)

The Society of Automotive Engineers (SAE) specifies a 37° angle flare or seat be used with high pressure hydraulic tubing. These are commonly called JIC couplings.

The JIC 37°Flare male will only mate with a JIC female.

The JIC male has straight threads and a 37°Flare seat.

Thread Identification Table SAE J514 37°Flare (JIC)

Dash Size	Inch Size	Thread Size	Female II	Thread D	Male Thread OD		
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)	
-02	1/8	5/16 - 24	6.9	0.27	7.8	0.31	
-03	3/16	3/8 - 24	8.5	0.34	9.4	0.37	
-04	1/4	7/16 - 20	9.9	0.39	11.2	0.44	
-05	5/16	1/2 - 20	11.5	0.45	12.6	0.49	
-06	3/8	9/16 - 18	12.9	0.51	14.1	0.56	
-08	1/2	3/4 - 16	17.5	0.69	18.9	0.74	
-10	5/8	7/8 - 14	20.5	0.81	22.1	0.87	
-12	3/4	1 1/16 - 12	24.9	0.98	26.9	1.06	
-14	7/8	1 3/16 - 12	28.1	1.11	30.0	1.18	
-16	1	1 5/16 - 12	31.3	1.23	33.1	1.31	
-20	1 1/4	1 5/8 - 12	39.2	1.54	41.1	1.62	
-24	1 1/2	1 7/8 - 12	45.6	1.79	47.4	1.87	
-32	2	2 1/2 - 12	61.4	2.42	63.3	2 4 9	

The male has straight threads and an O-ring. The female has straight threads and a sealing face. The seal is made at the O-ring on the male and sealing face on the female.

The threads hold the connection mechanically.

thread Thread I.D.

SAE Straight Thread O-Ring Boss

"O" Ring Boss Male

"O" Ring Boss Female Port

The JIC female has straight threads and a 37°Flare seat.

The seal is made on the 37°Flare seat by establishing a line contact between the male flare and the female cone seat. The threads hold the connection mechanically.

CAUTION: In the -02, -03, -04, -05, -08 and -10 sizes, the threads of the SAE 45°Flare and the SAE 37°Flare are the same. However, the sealing surface angles are not the same. Carefully measure the seat angle to differentiate.

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

American (Continued)

SAE J512 45°

A term usually applied to fittings having a 45° angle flare or seat. Soft copper tubing is generally used in such applications as it is easily flared to the 45° angle. These are for low pressure applications – commonly used in refrigeration, automotive and truck piping systems. The SAE 45°Flare male will mate with an SAE 45°Flare female only

The SAE male has straight threads and a 45°Flare seat.

Thread	Identification	Table
SAE J5	12 45°	

Dash Inch Size Size		Thread Size	Female II	Thread D	Male Thread OD		
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)	
-02	1/8	5/16 - 24	6.9	0.27	7.9	0.31	
-03	3/16	3/8 - 24	8.6	0.34	9.6	0.38	
-04	1/4	7/16 - 20	9.9	0.39	11.2	0.44	
-05	5/16	1/2 - 20	11.4	0.45	12.7	0.50	
-06	3/8	5/8 - 18	14.2	0.56	15.7	0.62	
-07	7/16	11/16 - 16	15.7	0.62	17.3	0.68	
-08	1/2	3/4 - 16	17.0	0.68	19.0	0.75	
-10	5/8	7/8 - 14	20.3	0.80	22.3	0.88	
-12	3/4	1 1/16 - 14	25.1	0.99	26.9	1.06	
-14	7/8	1 1/4 - 12	29.5	1.16	31.7	1.25	
-16	1	1 3/8 - 12	32.5	1.28	35.0	1.38	

The SAE female has straight threads and a 45°Flare seat.

The seal is made on the 45°Flare seat.

The threads hold the connection mechanically.

CAUTION: In the -02, -03, -04, -05, -08 and -10 sizes, the threads of the SAE 45°Flare and the SAE 37°Flare are the same. However, the sealing surface angles are not the same. Carefully measure the seat angle to differentiate.

SAE 45° Flare Male

SAE 45° Flare Swivel Female

SAE J1453 O-Ring Face Seal (ORFS)

A seal is made when the O-ring in the male contacts the flat face on the female. Couplings are intended for hydraulic systems where elastomeric seals are acceptable to overcome leakage and leak resistance is crucial. This connection offers the very best leakage control available today.

Thread Identification Table
SAE J1453 O-Ring Face Seal (ORFS)

· · · · · · · · · · · · · · · · · · ·								
Dash Size	Inch Size	Thread Size	Female II	Thread D	Male Thread OD			
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)		
-04	1/4	9/16 - 18	12.9	0.51	14.1	0.56		
-06	3/8	11/16 - 16	15.9	0.63	17.3	0.68		
-08	1/2	13/16 - 16	19.1	0.75	20.5	0.81		
-10	5/8	1 - 14	23.6	0.93	23.2	0.99		
-12	3/4	1 3/16 - 12	28.1	1.11	30.0	1.18		
-16	1	1 7/16 - 12	34.4	1.36	36.3	1.43		
-20	1 1/4	1 11/16 - 12	40.8	1.61	42.7	1.68		
-24	1 1/2	2 - 12	48.7	1.92	50.6	1.99		

The male connector has a straight thread and a machined flat face. The female has a straight thread and a machined flat face. The seal takes place by compressing the O-ring onto the flat face of the female, similar to the split flange type fitting. The threads hold the connection mechanically.

O-Ring Face Seal (ORFS)

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

American (Continued)

SAE J512 Inverted Flare

Thread Identification Table

This connection is frequently used in automotive systems. The male connector can either be a 45°Flare in the tube fitting form or a 42° seat in the machined adapter form.

The female has a straight thread with a 42° inverted flare. The seal takes place on the flared surface. The threads hold the connection mechanically.

SAE .	SAE J512 Inverted Flare									
Dash Size	Inch Size	Thread Size	Female II	Thread D	Male Thread OD					
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)				
-02	1/8	5/16 - 28	6.9	0.27	7.9	0.31				
-03	3/16	3/8 - 24	8.6	0.34	9.6	0.38				
-04	1/4	7/16 - 24	9.9	0.39	11.2	0.44				
-05	5/16	1/2 - 20	11.4	0.45	12.7	0.50				
-06	3/8	5/8 - 18	14.2	0.56	15.7	0.62				
-07	7/16	11/16 - 18	15.7	0.62	17.3	0.68				
-08	1/2	3/4 - 18	17.0	0.68	19.0	0.76				
-10	5/8	7/8 - 18	20.3	0.80	22.3	0.88				
-12	3/4	1 1/16 - 16	25.1	0.99	26.9	1.06				

Male Half

Female Half

SAE J1467 Clip Fastener (Press-Lok Connector)

This is a radial O-ring seal connection commonly used for hydraulic applications in underground mines. The male contains an exterior O-ring and backup ring, plus, a groove to accept the "staple." The female has a smooth bore with two holes for the staple. A "U" shaped staple or retaining clip is inserted through the two holes, passing through the groove in the male to lock the connection together. The seal takes place by contact between the O-ring in the male and the smooth bore of the female.

Connect	tor Ider	ntification	Table
SAE J14	67 Clip	Fastener	

Dash Size	Inch Size	Ma O	ale D	Female ID			
		(in.)	(mm)	(in.)	(mm)		
-04	1/4	19/32	14.9	19/32	15.1		
-06	3/8	25/32	19.9	51/64	20.1		
-08	1/2	15/16	23.9	61/64	24.1		
-12	3/4	1 9/64	28.9	1 9/64	29.1		
-16	1	1 17/32	38.9	1 35/64	39.1		
-20	1 1/4	1 13/16	45.9	1 13/16	46.1		
-24	1 1/2	2 5/32	54.9	2 11/64	55.2		
-32	2	2 33/64	63.9	2 17/32	64.2		

Press-Lok Connectors

American (Continued)

SAE J518/DIN20066/ISO-DIS 6162/JIS B8363 O-ring Flanges

This connection is commonly used in fluid power systems. There are two pressure ratings. Code 61 Form R, PN 35/350 bar, Type I, is referred to as the "standard" series and Code 62 Form S, PN 415 bar, Type II, is the "heavy duty" "6000 psi" series. The design concept for both series is the same, but the bolt hole spacing and flanged head diameters are larger for the higher pressure, Code 62 connection.

The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port.

The male consists of a flanged head, grooved for an O-ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal take place on the O-ring, which is compressed between the flange head and the flat surface surrounding the port. The threaded bolts hold the connection together.

SAE J518, DIN 20066, ISO/ DIS 6162 and JIS B 8363 are interchangeable, except for bolt sizes.

SAE Code 61 and Code 62 4-Bolt Split Flange

4-Bolt Split Flange Bolt Hole Dimensions

Flange Dash	Fla Si	nge ze	Flar Thick	nge iness	Flai Si	nge ze	Fla Thicl	nge kness	Fla Si	nge ze	Fla Thicl	nge kness
Size	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
-08	1.19	30.2	.265	6.7	1.25	31.8	.305	7.7				
-10*	1.34	34.0	.265	6.7								
-12	1.50	38.1	.265	6.7	1.63	41.3	.345	8.7	1.63	41.3	.56	14.2
-16	1.75	44.5	.315	8.0	1.88	47.6	.375	9.5	1.88	47.6	.56	14.2
-20	2.00	50.8	.315	8.0	2.13	54.0	.405	10.3	2.13	54.0	.56	14.2
-24	2.38	60.3	.315	8.0	2.50	63.5	.495	12.6	2.50	63.5	.56	14.2
-32	2.81	71.4	.375	9.5	3.13	79.4	.495	12.6	3.13	79.4	.56	14.2
-40	3.31	84.1	.375	9.5								

Flange Head Guide

* -10 is a non-SAE size flange.

Note: All Code 61 flange head hose couplings meet or exceed SAE J518 Code 61 requirements for hydraulic split flange connections. The Code 61 flange head design can withstand a maximum operating pressure of 3000 to 5000 psi, depending on size.

How to Measure

Four Bolt Flange – First measure the port hole diameter using the calliper. Next, measure the longest bolt hole spacing from centre-to-centre (Dimension "A") or measure the flanged head diameter. OD

There are three exceptions:

- 1. The size -10, which is common outside of North America is not an SAE Standard size.
- 2. Caterpillar flanges, which are the same flange OD as SAE Code 62, have a thicker flange head.
- 3. Poclain flanges, which are completely different from SAE flanges.

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

British Connections

British Standard Pipe Parallel

Popular couplings British Standard Pipe (BSP) threads, also known as Whitworth threads.

The BSPP (parallel) male will mate with a BSPP (parallel) female or a female port.

The BSPP male has straight threads and a 30° seat.

The BSPP female has straight threads and a 30° seat.

The female port has straight threads and a spotface. The seal on the port is made with an O-Ring or soft metal washer on the male.

The BSPP (parallel) connector is similar to, but not interchangeable with, the NPSM connector. The thread pitch is different in most sizes, and the thread angle is 55° instead of the 60° angle found on NPSM threads. The female swivel is BSPP has a tapered nose which seals on the cone seat of the male.

British Standard Pipe Tapered

The BSPT (tapered) male will mate with a BSPT (tapered) female, or a BSPP (parallel) female.

The BSPT male has tapered threads. When mating with either the BSPT (tapered) female or the BSPP (parallel) female port, the seal is made on the threads accomplished by thread distortion. A thread sealant is recommended.

The BSPT connector is similar to, but not interchangeable with, the NPTF connector. The thread pitch is different in most cases, and the thread angle is 55° instead of the 60° angle found on NPTF threads.

Thread Identification Table British Standard Pipe Parallel & Tapered (BSPP & PSPT)

Dash Inch Size Size		Thread Size	Female Thread ID		Male Thread OD	
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)
-02	1/8	1/8 - 28	8.71	0.34	9.5	0.38
-04	1/4	1/4 - 19	11.1	0.44	13.5	0.53
-06	3/8	3/8 - 19	15.1	0.59	16.7	0.66
-08	1/2	1/2 - 14	18/3	0.72	20.6	0.81
-10	5/8	5/8 - 14	20.6	0.81	23.0	0.91
-12	3/4	3/4 - 14	23.8	0.94	26.2	1.03
-16	1	1 - 11	30.2	1.19	33.3	1.31
-20	1 1/4	1 1/4 - 11	38.9	1.53	42.1	1.66
-24	1 1/2	1 1/2 - 11	45.2	1.78	47.6	1.88
-32	2	2 - 11	56.4	2.22	59.5	2.34

British Standard Pipe Parallel (BSPP)

British Standard Pipe Tapered (BSPT)

French Connections

French GAZ have a 24° seat and metric threads. These are similar to German DIN couplings, but the threads are different in some sizes, the French use fine threads in all sizes. French flanges are different than SAE, they have a lip that protrudes from the flange face. These are Poclain style flanges.

Millimetrique and GAZ 24°

This connection consists of a common male and two different females.

The French Metric (GAZ) male will mate with the female 24°Cone or the female tube fitting.

The male has a 24° seat and straight metric threads. The female has a 24° seat or a tubing sleeve and straight metric threads. The Millimetrique Series is used with whole number metric O.D. tubing and the GAZ Series is used with fractional number metric O.D. pipe size tubing.

Female Tube Fitting

GAZ Poclain 24°Flange

The Poclain (French GAZ) 24° high pressure flange is usually found on Poclain equipment.

The male flange will mate with a female flange or port.

The seal is made on the 24° seat.

Thread Identification Table French Metric Millimetrique

Metric Thread	Female II	Thread D	Male ⁻ C	Male Thread OD		Tube OD	
(Dia. X Pitch)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	
M12 X 1.0	11.0	0.43	12.0	0.47	6	0.24	
M14 X 1.5	12.5	0.49	14.0	0.55	8	0.31	
M16 X 1.5	14.5	0.57	16.0	0.63	10	0.39	
M18 X 1.5	16.5	0.65	18.0	0.71	12	0.47	
M20 X 1.5	18.5	0.73	20.0	0.79	14	0.55	
M22 X 1.5	20.5	0.81	22.0	0.87	15	0.59	
M24 X 1.5	22.5	0.89	24.0	0.94	16	0.63	
M27 X 1.5	25.5	1.00	27.0	1.06	18	0.71	
M30 X 1.5	28.5	1.12	30.0	1.18	22	0.87	
M33 X 1.5	31.5	1.24	33.0	1.30	25	0.98	
M36 X 1.5	34.5	1.36	36.0	1.42	28	1.10	
M39 X 1.5	37.5	1.48	39.0	1.54	30	1.18	
M42 X 1.5	40.5	1.59	42.0	1.65	32	1.26	
M45 X 1.5	43.5	1.71	45.0	1.77	35	1.38	
M48 X 1.5	46.5	1.83	48.0	1.89	38	1.50	
M52 X 1.5	50.5	1.99	52.0	2.05	40	1.57	
M54 X 2.0	51.9	2.04	54.0	2.13	45	1.77	

Thread Identification Table French Metric GAZ 24°Cone

Dash Size	ash Inch Female Thread Size ID		Male T O	⁻ hread D	Tube OD 60°Cone		
(Dash)	(Dia. X Pitch)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)
-6	M20 X 1.5	18.5	0.73	20.0	0.78	13.25	0.52
-8	M24 X 1.5	22.5	0.89	24.0	0.94	16.75	0.66
-10	M30 X 1.5	28.5	1.12	30.0	1.18	21.25	0.83
-12	M36 X 1.5	34.5	1.36	36.0	1.41	26.75	1.05
-16	M45 X 1.5	43.5	1.71	45.0	1.77	33.50	1.32
-20	M52 X 1.5	50.5	1.99	52.0	2.04	42.25	1.66

German DIN Connections

A coupling referred to as metric, usually means a DIN coupling. Flanges are standard Code 61 or Code 62.

DIN 2353 24°Cone

The DIN 24°Cone male will mate with any of the three females shown below.

The male has a 24° seat, straight metric threads, and a recessed counterbore which matches the tube O.D. used with it. The mating female may be a 24°Cone with O'Ring, (DKO type) a metric tube fitting or a universal 24° or 60°Cone.

Thread Identification Table DIN 24°Cone

	Fen	nale	М	ale		Tub	e OD		
Metric Thread	Thr	ead	Thr	Thread		Light		Heavy	
)	0	U	Ser	ies	Sei	ies	
(Dia. X Pitch)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)	
M12 X 1.5	10.5	0.41	12	0.47	6	0.24			
M14 X 1.5	12.5	0.49	14	0.55	8	0.31	6	0.24	
M16 X 1.5	14.5	0.57	16	0.63	10	0.39	8	0.31	
M18 X 1.5	16.5	0.65	18	0.71	12	0.47	10	0.39	
M20 X 1.5	18.5	0.73	20	0.79			12	0.47	
M22 X 1.5	20.5	0.81	22	0.87	15	0.59	14	0.55	
M24 X 1.5	22.5	0.89	24	0.94			16	0.63	
M26 X 1.5	24.5	0.96	26	1.02	18	0.71			
M30 X 2.0	27.9	1.10	30	1.18	22	0.87	20	0.79	
M36 X 2.0	33.9	1.33	36	1.42	28	1.10	25	0.98	
M42 X 2.0	39.9	1.57	42	1.65			30	1.18	
M45 X 2.0	42.9	1.69	45	1.77	35	1.38			
M52 X 2.0	49.9	1.96	52	2.05	42	1.65	38	1.50	

DIN 3863 60°Cone

This connection is frequently used in hydraulic systems. The DIN 60°Cone male will mate with the female universal 24° or 60°Cone only.

The male has a 60° seat and straight metric threads.

Thread Identification Table DIN 60°Cone

Metric Thread	Female Thread ID		Male Thread OD		Tube OD	
(Dia. X Pitch)	(mm)	(in.)	(mm)	(in.)	(mm)	(in.)
M12 X 1.5	10.5	0.41	12	0.47	6	0.24
M14 X 1.5	12.5	0.49	14	0.55	8	0.31
M16 X 1.5	14.5	0.57	16	0.63	10	0.39
M18 X 1.5	16.5	0.65	18	0.71	12	0.47
M22 X 1.5	20.5	0.81	22	0.87	15	0.59
M26 X 1.5	24.5	0.96	26	1.02	18	0.71
M30 X 1.5	28.5	1.12	30	1.18	22	0.87
M38 X 1.5	36.5	1.44	38	1.50	28	1.10
M45 X 1.5	43.5	1.71	45	1.77	35	1.38
M52 X 1.5	50.5	1.99	52	2.05	42	1.65

There is a light and heavy series DIN coupling. Proper identification is made by measuring both the thread size and the tube O.D. (The heavy series has a smaller tube O.D. than the light, but has a thicker wall section).

DIN 24° Male and Mating Females

The female has a 24° and 60° universal seat and straight metric threads. The seal takes place by contact between the cone of the male and the nose of the flareless swivel. The threads hold the connection mechanically.

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

German DIN Connections (Continued)

Metric Standpipe

A metric standpipe is comprised of three components attached to a male fitting. The components are: a Standpipe, Bite Sleeve and Metric Nut. The nut is placed over the Standpipe, followed by the Bite Sleeve (see illustration below). For DIN light assemblies, a DIN light metric nut is used. For DIN heavy assemblies, a DIN heavy metric nut is used. The Bite Sleeve and Standpipe are selected on the basis of tube O.D.

Tube O.D.	Metric N	ut Thread
(mm)	Light	Heavy
6	M12 x 1.5	
8	M14 x 1.5	M16 x 1.5
10	M16 x 1.5	M18 x 1.5
12	M18 x 1.5	M20 x 1.5
15	M22 x 1.5	
16		M24 x 1.5
18	M26 x 1.5	
20		M30 x 2.0
22	M30 x 2.0	
25		M36 x 2.0
28	M36 x 2.0	
30		M42 x 2.0
35	M45 x 2.0	
38		M52 x 2.0
42	M52 x 2.0	

Japanese Connections

Japanese equipment uses JIS (Japanese Industrial Standard) couplings with a 30° seat and British Standard Pipe Parallel threads. All flanges are code 61 or Code 62 (except -10).

JIS 30°Flare Parallel Pipe Threads

JIS B 0202

These Japanese 30°Flare male coupling will mate with a Japanese 30°Flare female only.

The male and female have straight threads and a 30° seat. The seal is made on the 30° seat.

The threads on the Japanese 30°Flare connector conform to JIS B 020, the same as the BSPP threads. Both the British and Japanese connectors have a 30° seat, but they are not interchangeable, because the British seat is inverted.

JIS 30° Inverted Seat, Parallel Pipe Threads JIS B 0202

The JIS parallel is similar to the BSPP connection. The JIS parallel thread and the BSPP connection are interchangeable.

JIS B 0203

The JIS tapered pipe thread connection is similar to the BSPT connection and fully interchangeable. The Japanese connection does not have a 30°Flare, and will not mate with the BSPP female. The threads conform to JIS B 0203, same as BSPT threads.

The seal on the JIS tapered pipe thread connection is made on the threads.

Male

Thread Identification Table JIS Tapered Pipe, 30°Flare Parallel Pipe, and 30° Male Inverted Seat

Dash Inch Size Size		Thread Size	Female II	Thread D	Male Thread OD	
	(in.)	(in - TPI)	(mm)	(in.)	(mm)	(in.)
-02	1/8	1/8 - 28	8.7	0.34	9.5	0.38
-04	1/4	1/4 - 19	11.9	0.47	13.5	0.53
-06	3/8	3/8 - 19	15.1	0.59	16.7	0.66
-08	1/2	1/2 - 14	19.1	0.75	20.6	0.81
-10	5/8	5/8 - 14	20.6	0.81	23.1	0.91
-12	3/4	3/4 - 14	23.8	0.94	26.2	1.03
-16	1	1 - 11	30.2	1.19	33.3	1.31
-20	1 1/4	1 1/4 - 11	38.9	1.53	42.1	1.66
-24	1 1/2	1 1/2 - 11	45.2	1.78	47.6	1.88
-32	2	2 - 11	56.4	2.22	59.5	2.34

Japanese Connections (Continued)

Komatsu Style 30°Flare Parallel Threads

The Komatsu style 30°Flare Parallel thread coupling is identical to the Japanese 30°Flare parallel except for the threads. The Komatsu uses Metric fine threads which conform to JIS B 0207.

The Komatsu connector seals on the 30°Flare.

Flange Dash	Nominal Size		Metric Thread	Male Thread	B Thread
Size	(in.)	(mm)	Size	(mm)	(mm)
-06	3/8	9.5	M18 x 1.5	18	16.4
-08	1/2	13	M22 x 1.5	22	20.4
-10	5/8	16	M24 x 1.5	24	22.4
-12	3/4	19	M30 x 1.5	30	28.4
-16	1	25	M33 x 1.5	33	31.4
-20	1 1/4	32	M36 x 1.5	36	34.4
-24	1 1/2	38	M42 x 1.5	42	40.4

Male

Fermale

Komatsu Style Flange Fitting

Komatsu Flange Fitting

The Komatsu Flange fitting is nearly identical to and fully interchangeable with the SAE Code 61 flange fitting. In all sizes the O-ring dimensions are different. When replacing a Komatsu flange with an SAE style flange, an SAE style O-ring must be used.

Flange Dash	Nominal Size		Flange Size	А	В
Size	(in.)	(mm)	(in.)	(in.)	(in.)
-08	1/2	12.7	1.19	.73	.98
-10*	5/8	15.9	1.34	.73	1.10
-12	3/4	19.1	1.50	.85	1.22
-16	1	25.4	1.75	1.12	1.50
-20	1 1/4	31.8	2.00	1.36	1.73
-24	1 1/2	38.1	2.38	1.75	2.12
-32	2	50.8	2.81	2.22	2.56

* This is a non-SAE size flange

Recommended Fitting and Adapter Installation Torque

Please note that the recommended values shown on this page change on a periodic basis. These are the known recommended values as set by the appropriate agency standards at the time of this catalog printing.

SAE J514 37°Flare (JIC)

Dash Thread lb. ft. N. m Size Size Min Мах Min Max 7/16 - 20 -04 11 12 15 16 1/2 - 20 15 -05 14 19 21 -06 9/16 - 18 18 20 24 28 -08 3/4 - 16 36 39 49 53 -10 7/8 - 14 57 63 77 85 79 88 107 119 -12 1 1/16 - 12 103 127 140 -14 1 3/16 - 12 94 1 5/16 - 12 147 154 -16 108 113 -20 1 5/8 - 12 127 133 172 181 -24 1 7/8 - 12 158 167 215 226 -32 2 1/2 - 12 245 258 332 350

BSPP						
Dash	Thread	Torque	e lb. Ft.	Torque N m		
Size	Size	With O-Ring	Without O-Ring	With O-Ring	Without 0-Ring	
-02	1/8-28	N/A	7	N/A	10	
-04	1/4-19	15	15	20	20	
-06	3/8-19	26	26	35	35	
-08	1/2-14	37	44	50	60	
-10	5/8-14	44	52	60	70	
-12	3/4-14	63	85	85	115	
-16	1-11	85	103	115	140	
-20	1 1/4-11	140	155	190	210	
-24	1 1/2-11	177	214	240	290	
-32	2-11	221	295	300	400	

SAE J1453 O-Ring Face Seal

Dash	Thread	lb.	ft.	N. m	
Size	Size	Min	Max	Min	Max
-04	9/16 - 18	10	12	14	16
-06	11/16 - 16	18	20	24	27
-08	13/16 - 16	32	35	43	47
-10	1 - 14	46	50	60	68
-12	1 3/16 - 12	65	70	90	95
-16	1 7/16 - 12	92	100	125	135
-20	1 11/16 - 12	125	140	170	190
-24	2 - 12	150	165	200	225

SAE J518 Code 61 Flange Half Bolt

Dash	Thread	lb.	ft.	N. m	
Size	Size	Min	Max	Min	Max
-08	1/2	15	19	20	25
-12	3/4	21	29	28	40
-16	1	27	35	37	48
-20	1 1/4	35	46	48	62
-24	1 1/2	46	58	62	79
-32	2	54	66	73	90
-40	2 1/2	79	91	107	124
-48	3	137	149	186	203

SAE J518 Code 62 Flange Half Bolt

Dash	Thread	lb.	ft.	N. m				
Size	Size	Min	Max	Min	Max			
-08	1/2	15	19	20	25			
-12	3/4	25	33	34	45			
-16	1	42	50	56	68			
-20	1 1/4	62	75	85	102			
-24	1 1/2	116	133	158	181			
-32	2	199	216	271	294			

JIS (B8363)

(1		
Dash Size	Thread Size	lb. ft.	N.m
-04	1/4 - 19	19	25
-06	3/8 - 19	25	34
-08	1/2 - 14	49	64
-10	5/8 - 14	100	132
-12	3/4 - 14	100	132
-16	1 - 11	149	196
-20	1 1/4 - 11	171	225
-24	1 1/2 - 11	194	255
-32	2 - 11	240	316

Metric

Thread mm	lb. ft.	N. m
M12 x 1.5	15	15
M14 x 1.5	19	25
M16 x 1.5	33	45
M18 x 1.5	37	50
M20 x 1.5	52	70
M22 x 1.5	55	75
M24 x 1.5	74	100
M26 x 1.5	81	110
M30 x 2	96	160
M36 x 2	162	220
M42 x 2	170	230
M45 x 2	220	300
M52 x 2	367	500

Pressure Conversion

Metric to PSI

(1 kPa = 0.145 PSI)

Pressure Conversion

PSI to Metric (1 PSI = 6.89 kPa)

Kilo	Mega	Bar	Pounds ner
Pascals	Pascals	(Bar)	Square Inch
(kPa)	(MPa)	(200)	(PSI)
100	0.1	1	14.5
200	0.2	2	29.0
300	0.3	3	43.5
400	0.4	4	58.0
500	0.5	5	72.5
600	0.6	6	87.0
700	0.7	7	101.5
800	0.8	8	116.0
900	0.9	9	130.5
1,000	1.0	10	145.0
2,000	2.0	20	290.1
3,000	3.0	30	435.1
4,000	4.0	40	580.2
5,000	5.0	50	725.2
6,000	6.0	60	870.2
7,000	7.0	70	1,015
8,000	8.0	80	1,160
9,000	9.0	90	1,305
10,000	10	100	1,450
20,000	20	200	2,901
30,000	30	300	4,351
40,000	40	400	5,802
50,000	50	500	7,252
60,000	60	600	8,702
70,000	70	700	10,153
80,000	80	800	11,603
90,000	90	900	13,053
100,000	100	1,000	14,504
200,000	200	2,000	29,008
300,000	300	3,000	43,511

Pounds per	Kilo	Mega	Bar			
Square Inch	Pascals	Pascals	(Bar)			
(PSI)	(kPa)	(MPa)				
10	68.9	0.07	0.7			
20	137.9	0.14	1.4			
30	206.8	0.21	2.1			
40	275.8	0.28	2.8			
50	344.7	0.34	3.4			
60	413.7	0.41	4.1			
70	482.6	0.48	4.8			
80	551.6	0.55	5.5			
90	620.5	0.62	6.2			
100	689	0.7	6.9			
200	1,379	1.4	13.8			
300	2,068	2.1	20.7			
400	2,758	2.8	27.6			
500	3,447	3.4	34.5			
600	4,137	4.1	41.4			
700	4,826	4.8	48.3			
800	5,516	5.5	55.2			
900	6,205	6.2	62.1			
1,000	6,895	6.9	68.9			
2,000	13,790	13.8	147.9			
3,000	20,684	20.7	206.8			
4,000	27,579	27.6	275.8			
5,000	34,474	34.5	344.7			
6,000	41,369	41.4	413.7			
7,000	48,263	48.3	482.6			
8,000	55,158	55.2	551.6			
9,000	62,053	62.1	620.5			
10,000	68,948	68.9	689.0			
20,000	137,895	147.9	1,379.0			
30,000	206,843	206.8	2,068.0			
40,000	275,790	275.8	2,758.0			

Decimal and Millimeter Equivalents of Fractions

Inches		mm	Inc	ches	mm	Inches		Inches mm Inches		Inches		mm
1/64	.0156	.397	17/64	.2656	6.747	33/64	.5156	13.097		49/64	.7656	19.447
1/32	.0312	.794	9/32	.2812	7.144	17/32	.5312	13.494		25/32	.7812	19.844
3/64	.0468	1.191	19/64	.2968	7.541	35/64	.5468	13.891		51/64	.7968	20.241
1/16	.0625	1.588	5/16	.3125	7.938	9/16	.5625	14.288		13/16	.8125	20.638
5/64	.0781	2.381	21/64	.3281	8.334	37/64	.5781	14.684		53/64	.8281	21.034
3/32	.0937	2.381	11/32	.3437	8.731	19/32	.5937	15.081		27/32	.8437	21.431
7/64	.1093	2.778	23/64	.3593	9.128	39/64	.6093	15.478		55/64	.8593	21.828
1/8	.1250	3.175	3/8	.3750	9.525	5/8	.6250	15.875		7/8	.8750	22.225
9/64	.1406	3.572	25/64	.3906	9.922	41/64	.6406	16.272		57/64	.8906	22.622
5/32	.1562	3.969	13/32	.4062	10.319	21/32	.6562	16.669		29/32	.9062	23.019
11/64	.1718	4.366	27/64	.4218	10.716	43/64	.6718	17.066		59/64	.9218	23.416
3/16	.1875	4.763	7/16	.4375	11.113	11/16	.6875	17.463		15/16	.9375	23.813
13/64	.2031	5.159	29/64	.4531	11.509	45/64	.7031	17.859		61/64	.9531	24.209
7/32	.2187	5.556	15/32	.4687	11.906	23/32	.7187	18.256		31/32	.9687	24.606
15/64	.2343	5.963	31/64	.4843	12.303	47/64	.7343	18.653		63/64	.9843	25.003
1/4	.2500	6.350	1/2	.5000	12.700	3/4	.7500	19.050		1	1.0000	25.400

Because we continually examine ways to improve our products, we reserve the right to alter specifications or discontinue products without prior notice.

198

Temperature Conversion Tables

-459 to 0				0 to 100							100 to 1,000						
	°C			°C				°C				°C				°C	
°C	°F	°F	°C	°F	°F		°C	°F	°F		°C	°F	°F		°C	°F	°F
-273	-459.4		-17.8	0	32.0		10.0	50	122.0		38	100	212		260	500	932
-268	-450		-17.2	1	33.8		10.6	51	123.8		43	110	230		266	510	950
-262	-440		-16.7	2	35.6		11.1	52	125.6		49	120	248		271	520	968
-257	-430		-16.1	3	37.4		11.7	53	127.4		54	130	266		277	530	986
-251	-420		-15.6	4	39.2		12.2	54	129.2		60	140	284		282	540	1004
-246	-410		-15.0	5	41.0		12.8	55	131.0		66	150	302		288	550	1022
-240	-400		-14.4	6	42.8		13.3	56	132.8		71	160	320		293	560	1040
-234	-390		-13.9		44.6		13.9	5/	134.6		11	1/0	338		299	570	1058
-229	-380		-13.3	8	40.4		14.4	58	130.4		82	180	350		304	580	1076
-223	-370		-12.8	9	48.2		15.0	59	138.2		88	190	3/4		310	590	1094
-210	-300		-12.2	10	50.0		10.0	00 61	140.0		93	200	392		221	610	1112
-212	-340		-11.7	12	53.6		16.7	62	141.0		100	210	410		321	620	11/18
-201	-340		-10.6	12	55 /		17.2	63	145.0		100	212	/28		332	630	1166
-196	-320		-10.0	14	57.2		17.2	64	147.2		110	220	420		338	640	1184
-190	-310		-9.4	15	59.0		18.3	65	149.0		116	240	464		343	650	1202
-184	-300		-8.9	16	60.8		18.9	66	150.8		121	250	482		349	660	1220
-179	-290		-8.3	17	62.6		19.4	67	152.6		127	260	500		354	670	1238
-173	-280		-7.8	18	64.6		20.0	68	154.4		132	270	518		360	680	1255
-169	-273	-459	-7.2	19	66.2		20.6	69	156.2		138	280	536		366	690	1274
-168	-270	-454	-6.7	20	68.0		21.1	70	158.0		143	290	554		371	700	1292
-162	-260	-436	-6.1	21	69.8		21.7	71	159.8		149	300	572		377	710	1310
-157	-250	-418	-5.6	22	71.6		22.2	72	161.6		154	310	590		382	720	1328
-151	-240	-400	-5.0	23	73.4		22.8	73	163.4		160	320	608		388	730	1346
-146	-230	-382	-4.4	24	75.2		23.3	74	165.2		166	330	626		393	740	1364
-140	-220	-364	-3.9	25	77.0		23.9	75	167.0		171	340	644		399	750	1382
-134	-210	-346	-3.3	26	78.8		24.4	76	168.8		177	350	662		404	760	1400
-129	-200	-328	-2.8	27	80.6		25.0	77	170.6		182	360	680		410	770	1418
-123	-190	-310	-2.2	28	82.4		25.6	/8 70	172.4		188	370	698		416	780	1436
-118	-180	-292	-1./	29	84.2		26.1	79	174.2		193	380	/16		421	790	1454
-112	-170	-274	-1.1	30	86.0		26.7	80	177.0		199	390	750		427	800	14/2
-107	-100	-200	-0.0	20	01.0		27.2	01	170.6		204	400	732		432	010 920	1490
-101	-130	-230	0	22	09.0		21.0	02	101 /		210	410	700		430	020 920	1506
-90	-140	-220	0.0	3/	03.2		20.3	8/	183.2		210	420	806		443	8/0	15//
-84	-120	-184	1.1	35	95.0		20.0	85	185.0		227	440	824		454	850	1562
-79	-110	-166	2.2	36	96.8		30.0	86	186.8		232	450	842		460	860	1580
-73	-100	-148	2.8	37	98.6		30.6	87	188.6		238	460	860		466	870	1598
-68	-90	-130	3.3	38	100.4		31.1	88	190.4		243	470	878		471	880	1616
-62	-80	-112	3.9	39	102.2		31.7	89	192.2		249	480	896		477	890	1634
-57	-70	-94	4.4	40	104.0		32.2	90	194.0		254	490	914		482	900	1652
-51	-60	-76	5.0	41	105.8		32.8	91	195.8						488	910	1670
-46	-50	-58	5.6	42	107.6		33.3	92	197.6						493	920	1688
-40	-40	-40	6.1	43	109.4		33.9	93	199.4						499	930	1706
-34	-30	-22	6.7	44	111.2		34.4	94	201.2						504	940	1724
-29	-20	-4	7.2	45	113.0		35.0	95	203.0						510	950	1742
-23	-10	14	7.8	46	114.8		35.6	96	204.8						516	960	1760
-17.8	0	32	8.3	47	116.6		36.1	97	206.6						521	970	1778
			8.9	48	118.4		36.7	98	208.4						52/	980	1/95
			9.4	49	120.2		31.2	99	210.2						532	990	1014
1			1				31.ŏ	100	212.0	1	1				538	1000	1032

Look up the reading in the middle (shaded) column. To determine equivalent in Fahrenheit, look in right hand column; to determine equivalent in Centigrade, look in left hand column. Example: $-20^{\circ}F = -29^{\circ}C$ (left).

Hexagon Across Corner Dimensions

The across corner dimensions are calculated using the factor 1.1547. Should the corners be rounded, the across corner dimensions will be smaller than shown in the table below.

Metric H	ex Sizes	Inch Hex Sizes												
				H	exagons ir	agons in inches and mm; Across corner dimensions in mm								
S	е		S		е		S		е	S			е	
mm	mm	In	In	mm	mm	In	In	mm	mm	In	In	mm	mm	
10	11.5	1/4	0.25	6.4	7.4	1 1/4	1.25	31.8	36.7	2 5/16	2.31	58.7	67.8	
12	13.8	9/32	0.28	7.1	8.2	1 9/32	1.28	32.5	37.5	2 3/8	2.38	60.3	69.6	
14	16.2	5/16	0.31	7.9	9.1	1 5/16	1.31	33.3	38.5	2 7/16	2.44	61.9	71.5	
17	19.6	11/32	0.34	8.7	10.0	1 11/32	1.34	34.1	39.4	2 1/2	2.50	63.5	73.3	
19	21.9	3/8	0.38	9.2	10.6	1 3/8	1.38	34.9	40.3	2 9/16	2.56	65.1	75.2	
22	25.4	13/32	0.41	10.3	11.9	1 13/32	1.41	35.7	41.2	2 5/8	2.63	66.7	77.0	
24	27.7	7/16	0.44	11.1	12.8	1 7/16	1.44	36.5	42.1	2 11/16	2.69	68.3	78.9	
27	31.2	15/32	0.47	11.9	13.7	1 15/32	1.47	37.3	43.1	2 3/4	2.75	69.9	80.7	
30	34.6	1/2	0.50	12.7	14.7	1 1/2	1.50	38.1	44.0	2 13/16	2.81	71.4	82.4	
32	36.9	17/32	0.53	13.5	15.6	1 17/32	1.53	38.9	44.9	2 7/8	2.88	73.0	84.3	
36	41.6	9/16	0.56	14.3	16.5	1 9/16	1.56	39.7	45.8	2 15/16	2.94	74.6	86.1	
41	47.3	19/32	0.59	15.1	17.4	1 19/32	1.59	40.5	46.8	3	3.00	76.2	88.0	
46	53.1	5/8	0.63	15.9	18.4	1 5/8	1.63	41.3	47.7	3 1/16	3.06	77.8	89.8	
50	57.7	21/32	0.66	16.7	19.3	1 21/32	1.66	42.1	48.6	3 1/8	3.13	79.4	91.7	
55	63.5	11/16	0.69	17.5	20.2	1 11/16	1.69	42.9	49.5	3 3/16	3.19	81.0	93.5	
60	69.3	23/32	0.72	18.3	21.1	1 23/32	1.72	43.7	50.5	3 1/4	3.25	82.6	95.4	
65	75.0	3/4	0.75	19.1	22.0	1 3/4	1.75	44.5	51.4	3 5/16	3.31	84.1	97.1	
70	80.0	25/32	0.78	19.8	22.9	1 25/32	1.78	45.2	52.2	3 3/8	3.38	85.7	99.0	
75	86.5	13/16	0.81	20.6	23.8	1 13/16	1.81	46.0	53.1	3 7/16	3.44	87.3	100.8	
80	92.4	27/32	0.84	21.4	24.7	1 27/32	1.84	46.8	54.0	3 1/2	3.50	88.9	102.7	
85	98.0	7/8	0.88	22.2	25.6	1 7/8	1.88	47.6	55.0	3 9/16	3.56	90.5	104.5	
90	104	29/32	0.91	23.0	26.6	1 29/32	1.91	48.4	55.9	3 5/8	3.63	92.1	106.3	
95	110	15/16	0.94	23.8	27.5	1 15/16	1.94	49.2	56.8	3 11/16	3.69	93.7	108.2	
100	116	31/32	0.97	24.6	28.4	1 31/32	1.97	50.0	57.7	3 3/4	3.75	95.3	110.0	
105	121	1	1.00	25.4	29.3	2	2.00	50.8	58.7	3 13/16	3.81	96.8	11.8	
110	127	1 1/32	1.03	26.2	30.3	2 1/32	2.03	51.6	59.6	3 7/8	3.88	98.4	113.6	
115	133	1 1/16	1.06	27.0	31.2	2 1/16	2.06	52.4	60.5	3 15/16	3.94	100.0	115.5	
120	139	1 3/32	1.09	27.8	32.1	2 3/32	2.09	53.2	61.4	4	4.00	101.6	117.3	
130	150	1 1/8	1.13	28.6	33.0	2 1/8	2.13	54.0	62.4	4 1/8	4.13	104.8	121.0	
135	156	1 5/32	1.16	29.4	33.9	2 5/32	2.16	54.8	63.3	4 1/4	4.25	108.0	124.7	
145	167	1 3/16	1.19	30.2	34.9	2 3/16	2.19	55.6	64.2	4 3/8	4.38	111.1	128.3	
150	173	1 7/32	1.22	31.0	35.8	2 1/4	2.25	57.5	66.0	4 1/2	4.50	114.3	132.0	